Browsing by Author "Pernakov, Mykola"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Complementary Effect of Non-Persistent Silver Nano-Architectures and Chlorhexidine on Infected Wound Healing.(Biomedicines, 2021-09-14) Sulaieva, Oksana; Pernakov, Mykola; Ermini, Maria LauraSurgical site infection (SSI) substantially contributes each year to patients' morbidity and mortality, accounting for about 15% of all nosocomial infections. SSI drastically increases the rehab stint and expenses while jeopardizing health outcomes. Besides prevention, the treatment regime relies on an adequate antibiotic therapy. On the other hand, resistant bacterial strains have currently reached up to 34.3% of the total infections, and this percentage grows annually, reducing the efficacy of the common treatment schemes. Thus, new antibacterial strategies are urgently demanded. Here, we demonstrated in rats the effectiveness of non-persistent silver nano-architectures (AgNAs) in infected wound healing together with their synergistic action in combination with chlorhexidine. Besides the in vivo efficacy evaluation, we performed analysis of the bacteriological profile of purulent wound, histological evaluations, and macrophages polarization quantifications to further validate our findings and elucidate the possible mechanisms of AgNAs action on wound healing. These findings open the way for the composition of robust multifunctional nanoplatforms for the translation of safe and efficient topical treatments of SSI.Item Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding(Materials Science and Engineering. C, Materials for biological applications., 2020-11-21) Sulaieva, Oksana; Deineka, Volodymyr; Pernakov, MykolaThe uncontrolled parenchymatic bleeding is still a cause of serious complications in surgery and require new effective hemostatic materials. In recent years, numerous chitosan-based materials have been intensively studied for parenchymatic bleeding control but still require to increased safety and effectiveness. The current research is devoted to new hemostatic materials made of natural polymer (chitosan) developed using electrospinning and microwave-assisted methods. Hemostatic performance, biocompatibility, degradation, and in-vivo effectiveness were studied to assess functional properties of new materials. Chitosan-based agents demonstrated considerable hemostatic performance, moderate biodegradation pace and high biocompatibility in vitro. Using the electrospinning-made chitosan-copolymer significantly improved in vivo biocompatibility and degradation of Chitosan-based agents that provides opportunities for its implementation for visceral bleeding management. Chitosan aerogel could be effectively applied in hemostatic patch development due to high antibacterial activity but it is not recommended for visceral application due to moderate inflammatory effect and slow degradation.