Кафедра фармацевтичної і біологічної хімії, фармакогнозії
Permanent URI for this communityhttps://ir.kmu.edu.ua/handle/123456789/95
Browse
Browsing Кафедра фармацевтичної і біологічної хімії, фармакогнозії by Subject "Controlled Release"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Antimicrobial properties of a new polymeric material based on poly(2-hydroxyethyl methacrylate)(Jornal © Mattioli 1885, Acta Biomed, 2021-09-21) Chornopyshchuk Roman; Nagaichuk Vasyl; Gerashchenko Igor; Nazarchuk Halyna; Kukolevska Olena; Chornopyshchuk Nataliia; Sidorenko SvetlanaBackground and aim. Оne of the promising areas is the development of synthetic wound dressings with programmed release of active substances that can affect various elements in the pathogenesis of the wound process. The aim was to study the antimicrobial properties of a new polymeric material based on poly(2-hydroxyethyl methacrylate). Methods: 2-hydroxyethyl methacrylate, dimethacrylate triethylene glycol as crosslinking agent, polymerization initiator of azobisizobutyronitrile along with a porogen and one of the antimicrobial agents, including decamethoxin, chlorhexidine bigluconate, silver nitrate, octenidine, furacilin, metronidazole, dioxidine, and gentamicin were used to synthesize a new material with antimicrobial activity. For comparison, polymer samples synthesized without adding antimicrobials were used, as well as known dressing materials: activated carbon material, porcine skin, which were immersed into 0.02% decamethoxin solution before use, as well as silver-containing dressing, hydrogel dressings, including those filled with silver. Determination of antibacterial properties was performed by diffusion method. Results. Low antimicrobial activity of the studied existing wound dressings, which are widely used in medical practice, even under conditions of their saturation with antiseptic substances, has been established. Samples of the suggested polymeric material with the addition of antimicrobial substances showed the ability to inhibit the growth of the test strains of microorganisms at a sufficient level, especially with such fillers as decamethoxin, gentamicin, dioxidine. When metronidazole was added to the polymeric material, a reliable antimicrobial effect on the anaerobic microorganisms was established. Conclusions. Modification of the polymeric material of poly(2-hydroxyethyl methacrylate) by adding antimicrobial substances allows to ensure its high antimicrobial properties against different microorganisms. (www.actabiomedica.it)Item Experimental Substantiation of Antimicrobial Efficiency of a New Composite Polymeric Material Based on Poly(2-Hydroxyethyl Methacrylate) under the Action of Low-Intensity Current without External Power Supplies(Trans Tech Publications Ltd, Switzerland Online:2021-07-13, 2021-07-13) Nagaichuk, Vasyl; Chornopyshchuk, Roman; Gerashchenko, Igor; Kukolevska, Olena; Sidorenko, AnatolieActive use of polymeric materials has become an integral part of all areas of modern medicine. Wound dressings capable of prolonged release of drugs directly into the lesion occupy a special place among them. The possibility of using such materials in the presence of low-intensity currents without external power supplies in a comprehensive treatment program for patients with burn injuries remains promising. The aim of the work is to study experimentally the antimicrobial efficacy of a new composite polymeric material based on poly(2-hydroxyethyl methacrylate), saturated with the antiseptic decamethoxine, under conditions of low-intensity current without external power supplies. The method of free radical thermal polymerization of a mixture of liquid monomer 2-hydroxyethyl methacrylate, crosslinking agent triethylene glycol dimethacrylate, polymerization initiator azobisisobutyronitrile was used for the synthesis of composite polymeric material. In addition, fourfold volume of distilled water as a pore-forming agent and decamethoxine as an antimicrobial component were administered. Known dressings of synthetic and biological origin were selected for comparison, some of which were pre-soaked in a 0.02% solution of decamethoxine. The study of conductivity of the materials without external power supplies was performed on the surface of a dense nutrient medium in a Petri dish using VITA-01M measuring device. Determination of antibacterial properties was performed by diffusion into agar. The obtained results allowed to establish the ability of the suggested polymeric material to conduct low-intensity currents without external power supplies, exceeding the duration of other traditional dressings. Comparison of antimicrobial activity of the studied samples confirmed the synergism of the action of physical factors and a new polymer-based composite material with the addition of antimicrobial substance to inhibit the growth of the test museum and clinical strains of Staphylococcus aureus . The ability of low-intensity currents without external power supplies to potentiate the antimicrobial properties of a new composite polymeric material based on poly(2-hydroxyethyl methacrylate), modified with a pore-forming agent, with the addition of decamethoxine was experimentally established.