In Vivo Safety of New Coating for Biodegradable Magnesium Implants.

dc.contributor.authorSulaieva, Oksana
dc.contributor.authorDryhval, Bohdan
dc.contributor.authorHusak, Yevheniia
dc.date.accessioned2024-12-17T08:51:15Z
dc.date.available2024-12-17T08:51:15Z
dc.date.issued2023-08-24
dc.description.abstractBiodegradable Magnesium (Mg) implants are promising alternatives to permanent metallic prosthesis. To improve the biocompatibility and with the aim of degradation control, we provided Plasma Electrolytic Oxidation (PEO) of pure Mg implant in silicate-based solution with NaOH (S1 250 V) and Ca(OH)2 (S2 300 V). Despite the well-structured surface, S1 250 V implants induced enormous innate immunity reaction with the prevalence of neutrophils (MPO+) and M1-macrophages (CD68+), causing secondary alteration and massive necrosis in the peri-implant area in a week. This reaction was also accompanied by systemic changes in visceral organs affecting animals' survival after seven days of the experiment. In contrast, S2 300 V implantation was associated with focal lymphohistiocytic infiltration and granulation tissue formation, defining a more favorable outcome. This reaction was associated with the prevalence of M2-macrophages (CD163+) and high density of αSMA+ myofibroblasts, implying a resolution of inflammation and effective tissue repair at the site of the implantation. At 30 days, no remnants of S2 300 V implants were found, suggesting complete resorption with minor histological changes in peri-implant tissues. In conclusion, Ca(OH)2-contained silicate-based solution allows generating biocompatible coating reducing toxicity and immunogenicity with appropriate degradation properties that make it a promising candidate for medical applications.
dc.identifier.citationDryhval B, Husak Y, Sulaieva O, Deineka V, Pernakov M, Lyndin M, Romaniuk A, Simka W, Pogorielov M. In Vivo Safety of New Coating for Biodegradable Magnesium Implants. Materials (Basel). 2023 Aug 24;16(17):5807. doi: 10.3390/ma16175807. PMID: 37687498; PMCID: PMC10488394.
dc.identifier.doi10.3390/ma16175807
dc.identifier.urihttps://ir.kmu.edu.ua/handle/123456789/631
dc.language.isoen_US
dc.publisherMaterials (Basel)
dc.subjectMg-based implant
dc.subjectin vivo experiment
dc.subjectplasma electrolytic oxidation
dc.subjectsurface coating
dc.titleIn Vivo Safety of New Coating for Biodegradable Magnesium Implants.
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
In_Vivo_Safety_of_New_Coating_for_Biodegradable_Magnesium_Implants.pdf
Size:
2.84 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: